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ABSTRACT
The computational bottleneck for large nonlinear AC power
flow problems using Newton’s method is the solution of the
linear system at each iteration. We present a parallel linear
solution scheme using the Krylov subspace-based iterative
solver GMRES preconditioned with overlapping restricted
additive Schwarz method (RASM) that shows promising
speedup for this linear system solution. This paper eval-
uates the performance of RASM with different amounts of
overlap and presents its scalability and convergence behav-
ior for three large power flow problems consisting of 22,996,
51,741, and 91,984 buses respectively.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Model-
ing; J.2 [Computer Applications in Physical Sciences
and Engineering]: Engineering

General Terms
Algorithms, Design, Performance

Keywords
Power flow, Parallel processing, Krylov subspace, Precondi-
tioner

1. INTRODUCTION
Power flow is the backbone of steady-state analysis of

power systems. Various steady-state applications, for ex-
ample contingency analysis, transfer limit calculations, and
transient stability analysis, are based on the solution of
power flow equations. Hence, any performance improve-
ment in power flow solution will directly benefit the per-
formance of various steady-state applications. Steady state
security analysis, involving repeated power flow solutions,
is a computationally challenging problem for large regional

(c) 2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
HiPCNA-PG’13, November 17 - 21 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2510-3/13/11 ...$15.00.
http://dx.doi.org/10.1145/2536780.2536784.

and national interconnections due to the large number of
equations to be solved. Table 1 gives an idea of the size of
several power system interconnections in the United States.

Table 1: Sizes of several power system networks
Interconnection Number of Buses

PJM 13000+ [23]
ERCOT 18000+ [16]

U.S. Eastern Interconnection 50000+
U.S. Western Interconnection 15000+

With the addition of new equipment and increase in load
growth, the size of power system networks is expected to
increase. Moreover, various ISOs have indicated the need
to model and gather real-time information from the sub-
transmission and distribution systems in order to provide
finer-granularity load modeling [21]. The sheer volume of
the components needed for such a combined transmission-
distribution power flow analysis presents an onerous compu-
tational task. As processor speeds were increasing, steady-
state security analysis for very large interconnections on a
single processor appeared possible in the not-too-distant fu-
ture. Unfortunately, processor clock speeds saturated about
a decade ago.

A natural way to speed this computation is to use paral-
lel computing techniques, namely, share the computational
load among multiple processors. The need for parallelizing
existing power system applications is even greater as the
computer hardware industry moves toward multicore and
many core architectures. All major computer vendors are
aggressively introducing a new generation of hardware that
incorporates multiple cores on a chip, sometimes with ad-
ditional simultaneous multithreading capabilities. Products
incorporating 6 and 8 cores are already on the market, and
number of cores per chip is expected to grow rapidly, so that
even in the relatively short term, a single chip is expected
to support the execution of a few hundred threads. These
multicore architectures can be utilized efficiently with par-
allel algorithms that distribute the computational load over
multiple cores.

The aim of this work is to obtain a scalable solution of
very large power flow problems. Our focus is specifically on



efficient parallel solution of the linear system of equations
during each power flow Newton iteration. We use a precon-
ditioned generalized minimal residual (GMRES) algorithm
as the linear solver. As a preconditioner, we use an overlap-
ping restricted additive Schwarz method (RASM) that has
proved efficient for applications involving partial differential
equations [5]. The performance of RASM is evaluated in
terms of scalability and convergence behavior in this work.
The results presented for three very large networks, com-
prising of 22996, 51741, and 91984 buses respectively, show
promising scalability.

2. POWER FLOW BACKGROUND
Power flow analysis, sometimes referred to as load flow

analysis, is the linchpin of steady-state power systems anal-
ysis. Several power system applications, ranging from plan-
ning to operation, and from economic scheduling to exchange
of power between utilities, hinge on the solution of power
flow equations. Contingency analysis and available trans-
fer capacity (ATC) calculations require repeated power flow
solutions, while the minimization problem of economically
dispatching generating resources includes the power flow
equations as a constraint. Transient stability analysis also
includes power flow equations in its differential-algebraic
model. Moreover, power flow analysis serves as a starting
step for transient stability analysis by providing an initial
operating point.

Power flow formulation first appeared in the late 1960s
[35]. In the early 1970s, a fast decoupled technique was
introduced [33] based on the physical insight of weak cou-
pling between real power-voltage magnitude (PV) and re-
active power-voltage angles (Qθ). Since then several vari-
ations and improvements of power flow formulations and
techniques have been introduced [3], [31], [28], [12], [17],
[34], [11].

The nodal power balance formulation is the most widely
used formulation for power flow analysis. In the power bal-
ance form, the set of nonlinear equations to be solved is
described by complex power balances at each bus. The sum-
mation of the power injected at each bus and absorbed by
the network must equate to zero. The resultant complex
power balance equation for each bus, or network node, is
given by the following.

S̄inji = V̄i(

n∑
k=1

(Gik + jBik)V̄k)∗ (1)

In Equation 1, ¯Sinji denotes the complex power injection,

that is, S̄inji = S̄Gi − S̄Di, where S̄Gi is the complex power
injected by generators and S̄Di is the complex power ab-
sorbed at bus i. Decomposing Equation 1 into real and
imaginary parts, we obtain the real and reactive power bal-
ance equations as follows:

P inji −
n∑
k=1

|Vi||Vk|(Gikcos(θik) +Biksin(θik)) = ∆P = 0

(2)

Qinji −
n∑
k=1

|Vi||Vk|(Giksin(θik)−Bikcos(θik)) = ∆Q = 0,

(3)
where θik = θi−θk. In the power balance form, the variables
are expressed in polar coordinates; that is, the variables are

the magnitudes and angles of the complex voltage V̄ at the
buses. This coordinate system is convenient for representing
the power balance equations as compared with expressing
the equations in rectangular coordinates. In the power flow
formulation, PQ buses (constant load, uncontrolled voltage
magnitude) are given by Equations 2 and 3 while PV buses
(controlled voltage magnitude) are described only by Equa-
tion 2. For PV buses (voltage-controlled buses), it is as-
sumed that generators incident on these buses can produce
adequate reactive power to regulate the terminal voltage and
hence Equation 3 can be omitted. If a generator incident
at PV bus reaches its reactive power limit, then it can no
longer control the terminal bus voltage and in such a case
the bus is switched from PV to PQ. Since our primary goal
is to evaluate the preconditioner scalability, we ignore this
reactive power constraint. As a result of the assumption
of controlled-voltage magnitude for the PV buses, the total
number of equations to be solved in the power balance form
is 2npq + npv, where npq is the number of PQ buses and
npv is the number of PV buses.

The resultant set of nonlinear equations are solved itera-
tively by a Newton-Raphson method. The Newton-Rhapson
method entails linearization of the power flow equations
around the current iterate and then solving a linear system of
equations (4) to get an update for the next iterate. Solution
of the linear system can be done by either direct or iterative
methods. Direct solution via LU factorization is the widely
used scheme. Flueck and Chiang [18] presented an iterative
solution using GMRES with a physics-based preconditioner
derived from the decoupled power flow matrix.∂∆P

∂θ

∂∆P

∂V
∂∆Q

∂θ

∂∆Q

∂V

[∆θ
∆V

]
= −

[
∆P
∆Q

]
(4)

In the context of parallel solution of (4), Wu and Bose [38]
presented a parallel LU factorization scheme by rearranging
the forward-backward substitution process and grouping to-
gether independent tasks. A speedup of 13 on a 20-processor
shared-memory computer was obtained in this work. Chen
and Chen [10] proposed a partitioning scheme to reorder
the matrix in a block bordered diagonal form and presented
speedup of 1 to 4 for a 288-bus system. Tu and Flueck [37]
presented a parallel direct solution on 15,359 and 30,910-bus
systems. A speedup of about 6 was obtained for the two sys-
tems. Tu and Flueck [36] also proposed a GMRES-based so-
lution using the matrix obtained from fast-decoupled power
flow as the preconditioner. They obtained an increased
speedup of about 12 on 16 processors for the same two cases.
Massively parallel graphical processing units have also been
explored by researchers for the solution of power flow equa-
tions [20], [25]. A parallel power flow implementation for
shared memory multicore machines using OpenMP was pre-
sented in [13].

3. LINEAR SOLVER DETAILS
In this section, we describe the details of our choice of

linear solution scheme beginning with the domain decom-
position approach. We then briefly describe the Krylov-
subspace-based iterative linear solver GMRES followed by
overlapping additive Schwarz preconditioning and RASM

3.1 Domain Decomposition



Domain decomposition algorithms operate by dividing the
entire domain W into smaller non-overlapping subdomains
Wi where

W =

N⋃
i=1

W 0
i (5)

and each subdomain W 0
i is the computational assignment of

each processor. In the context of power systems, this would
mean a division of the power system network into several
subnetworks where each subnetwork is assigned to a proces-
sor. Domain decomposition algorithms are specifically posed
as graph partitioning problems where the dual objective is
to obtain balanced partitions (balance workload) along with
minimizing the edge-cuts (minimize communication). Sev-
eral graph partitioning methods, namely combinatorial [27],
spectral [29], geometric [9], and multilevel [22], [26], can be
found in the literature. Although obtaining good partition
is a critical aspect for parallel iterative linear solution, it is
beyond the scope of this paper; we refer interested readers
to [24] for a good comparison of different graph partition-
ing algorithms and available packages. We use a multilevel
graph partitioning algorithm available through the Chaco
[22] package. The multilevel approach recursively creates
smaller approximated graphs of the original graph and then
does a projection from the smallest level back through in-
termediate levels. Every few levels of projection, the com-
binatorial algorithm by Kerninghan and Lin [27] is used for
further refinement.

3.2 Generalized Minimum Residual Method
(GMRES)

Krylov subspace iterative methods are the most popular
among the iterative methods for solving large linear systems.
These methods are based on projection onto subspaces called
Krylov subspaces of the form b, Ab,A2b, A3b, . . .. A general
projection method for solving the linear system

Ax = b (6)

is a method that seeks an approximate solution xm from an
affine subspace x0 +Km of dimension m by imposing

b−Axm ⊥ Lm,

where Lm is another subspace of dimension m and x0 is
an arbitrary initial guess to the soution. A Krylov subspace
method is a method for which the subspace Km is the Krylov
subspace

Km(A, r0) = span{r0, Ar0, A2r0, A
3r0, . . . , A

m−1r0},

where r0 = b − Ax0. The different versions of Krylov sub-
space methods arise from different choices of the subspace
Lm and from the ways in which the system is preconditioned.

The generalized minimum residual method (GMRES)[30]
is a projection method based on taking Lm = AKm(A, r0)
in which Km is the mth Krylov subspace. This technique
minimizes the residual norm over all vectors x ∈ x0+Km. In
particular, GMRES creates a sequence xm that minimizes
the norm of the residual at step m over the mth Krylov
subspace

||b−Axm||2 = min||b−Ax||2. (7)

At step m, an Arnoldi process is applied for the mth
Krylov subspace in order to generate the next basis vec-
tor. When the norm of the new basis vector is sufficiently

small, GMRES solves the minimization problem

ym = argmin||βe1 − H̄my||2,

where H̄m is the (m+ 1)xm upper Hessenberg matrix.

3.3 Preconditioning
The convergence of the Krylov subspace linear solvers de-

pends on the eigenvalues of the operating matrix A and can
be slow if the matrix has widely dispersed eigenvalues, such
as ill-conditioned power system matrices. Hence, in order to
speed the convergence, a preconditioner matrix M , where
M−1 approximates A−1, is generally used. A preconditioner
is a matrix that transforms the linear system

Ax = b

into another system with a better spectral properties for the
iterative solver. If M is the preconditioner matrix, then the
transformed linear system is

M−1Ax = M−1b. (8)

Equation 8 is referred to as being preconditioned from the
left, but one can also precondition from the right

AM−1y = b, x = M−1y, (9)

or split preconditioning

M−1
1 AM−1

2 y = M−1
1 b, x = M−1y, (10)

where the preconditioner is M = M1M2.
When Krylov subspace methods are used, it is not neces-

sary to form the preconditioned matrices M−1A or AM−1

explicitly. Instead, matrix-vector products with A and solu-
tions of linear systems of the form Mz = r are performed.

Designing a good preconditioner depends on the choice
of iterative method, problem characteristics, and so forth.
In general a good preconditioner should be inexpensive to
construct and apply, and the preconditioned system should
be easy to solve.

3.4 Overlapping Additive Schwarz Method and
RASM

In the area of domain decomposition algorithms, consid-
erable research has been done on overlapping Schwarz algo-
rithms [6], [8], [15], [32], [5], [7]. Our interest for this paper is
on overlapping additive Schwarz preconditioner (ASM), and
in particular its variant restricted additive Schwarz precondi-
tioner introduced by Cai and Sarkis[5]. We first describe the
general mechanism of constructing an ASM preconditioner
as described in [6] and then present the variant proposed by
Cai and Sarkis [5].

3.4.1 Additive Schwarz Method (ASM)
Consider a linear system of the form

Ax = b, (11)

where A = (aij) is an n × n nonsingular sparse matrix,
having a symmetric nonzero pattern. Defining the graph
G = (W,E), where the set of vertices W = {1, ..., n}, rep-
resent the n unknown and the edge set E = {(i, j) |aij 6= 0}
represent the pairs of vertices that are coupled by a nonzero
element in A. Here n is the size of the matrix. Since the
nonzero pattern is symmetric the adjacency graph G is in-
directed. Assume that the graph partition has been applied



resulting in N non-overlapping subsets W 0
i whose union is

W . Define
{
W 1
i

}
bs the one-overlap partition of W , where

W 1
i ⊃W 0

i is obtained by including all the immediate neigh-
boring vertices of the vertices in W 0

i . An example for a
domain with two subdomains with one-overlap partition is
shown in Figure 1.

Figure 1: Illustrative example for two overlapping
subdomains. Nodes marked • are in subdomain 1
(W 0

1 ) while ◦ represents nodes in subdomain 2 (W 0
2 ).

The solid circle is the one-overlap for subdomain 1
(W 1

1 ) and dashed circle for subdomain 2 (W 1
2 )

Extending this to δ-overlaps, we can define the δ-overlap
partition of W can be defined as,

W

N⋃
i=1

W δ
i ,

where W δ
i ⊃ W 0

i with δ levels of overlaps with its neigh-
boring subdomains. With each subdomain W 0

i , we define
a restriction operator R0

i . In matrix terms, R0
i is a n × n

sub-identity matrix whose diagonal elements are set to one
if the corresponding node belongs to W 0

i and to zero other-
wise. Similarly for δ-overlapping restriction operator Rδi can
be defined for each W δ

i . With this, the subdomain operator
can be defined as

Ai = RδiAR
δ
i . (12)

Note that although Ai is not invertible, its restriction to the
subspace

A−1
i ≡

(
(Ai)|Li

)−1

can be inverted. Here Li is the vector space spanned by the
set W δ

i in Rn. The additive Schwarz preconditioner can be
defined as

M−1
AS =

∑
RδiA

−1
i Rδi . (13)

3.4.2 Restricted Additive Schwarz Method (RASM)
Cai and Sarkis [5] proposed a variant of the additive Schwarz

preconditioning called restricted additive Schwarz precondi-
tioner. They introduced a simple and efficient change by
removing the overlap in the interpolation operator as given
in the following.

M−1
RAS =

∑
R0
iA
−1
i Rδi (14)

Their main motivation was to save half the communication
cost because R0

ix does not involve any data exchange with
neighboring processors. They also observed that in compar-
ison to the original additive Schwarz algorithm, there was a
reduction both in iteration count and CPU time.

3.5 Subdomain Linear Solves
The overlapping Schwarz preconditioners need the solu-

tion of subdomain linear system

A−1
i ri (15)

during the GMRES iterations, where ri = Rδi (b−Ax) is the
restricted error. The solution of Equation 15 can be done
either by direct or iterative linear solution schemes. As ma-
trices arising from power system applications are slightly
ill-conditioned, our experiments corroborate that the sta-
tionary iterative schemes such as as Gauss-Jacobi, Gauss-
Siedel, and successive over-relaxation (SOR) converge very
slowly. In this work, we solve the linear system in Equation
15 by a direct solver (LU factorization + triangular solves).
For a small number of subdomains, direct solve using LU is
expensive as the subdomains are large, but the subdomain
solve is robust. With more processors, the subdomain sizes
become smaller, reducing the cost of direct solves.

To minimize the fill-ins created by LU factorization, we ex-
perimented with various reordering strategies, available on
the test systems to determine the optimal reordering strat-
egy, namely, the ordering scheme resulting in the least num-
ber of nonzeros in the factored matrix. Our prior work [1]
showed that a quotient minimum degree [19] was the most
efficient among the reordering schemes tested and we con-
tinue to use it in this work.

4. PERFORMANCE RESULTS
In this section we present the results obtained for the par-

allel solution of power flow equations with RASM-preconditioned
GMRES scheme as the linear solver.

4.1 Hardware, Software, and Testcase details
The parallel performance runs were done on a shared-

memory machine with four 2.2 GHz AMD Opteron 6274
processors. Each processor has 16 cores, giving a total of
64 cores. The code for the developed simulator is written
in C using the PETSc [4] library framework, described in
Appendix A, and compiled with GNU’s gcc compiler with -
O3 optimization. We created larger representative test cases
synthetically by combining two MatPower [39] package dis-
tribution (version 4.1). MatPower includes a variety of power
flow test cases, with the smallest being a 4-bus network and
the largest consisting of over 3000 buses. We first created
a 5,749-bus test case by combining two MatPower test cases,
case3012wp (3012 buses) and case2737sop (2737). The 22,996-
bus test case was then created by combining four 5,749 cases
in a 2 by 2 grid structure as shown in Figure 2. Each 5,749
area is connected to its neighboring area through 6 randomly
chosen lines.

The 51,741-bus test case was created similarly by using a
3-by-3 grid and the largest case case91984, was created using
four 22,996 bus test cases placed in a 2-by-2 grid. For the
largest test case, we used twelve randomly chosen tie lines
between the areas instead of six. The inventory for the test
cases used is given in Table 2.

4.2 Scalability Results
We compared the performance of GMRES with overlap-

ping restricted additive Schwarz preconditioning scheme for
different amounts of overlap, 1, 2, and 3 respectively, with
neighboring subdomains. The performance was also com-



Figure 2: Creation of 22,996 bus test case from four
5,749 bus cases.

Table 2: Inventory of test cases
casename Buses Gens Lines
case22996 22,996 2,416 27,408
case51741 51,741 5,436 61,686
case91984 91,984 9,664 109,680

pared with block-Jacobi preconditioner, essentially a non-
overlapping additive Schwarz scheme, and parallel direct
solver SuperLU Dist [14]. All the results were also compared
with a Newton-LU on a single core. Figures (3)-(8) present
the scalability results on the three test systems ranging from
1 core to 16 cores. For all the test cases, the parallel direct
solver SuperLU Dist and GMRES with block-Jacobi precon-
ditioner were not found to be scalable. In fact, the results
show an increase in the execution time as compared with
on a single processor. On the other hand, GMRES precon-
ditioned with overlapping restricted additive Schwarz pre-
conditioning produced substantial speedup. For case22996,
a maximum speedup of 6.7 was seen with overlap-3 on 16
cores. This yielded in a reduction of the execution time from
0.6 seconds on a single core to 0.089 seconds on 16 cores.
Both case51741 and case91984 showed similar speedup char-
acteristics with maximum speedup of 9.6 and 9.1 respec-
tively, achieved with an overlap of 3 on 16 cores. Although
the results on higher overlap (overlap > 3) are not presented,
we note that a speedup saturation and slowdown for higher
overlap were observed for all three test cases. These results
can be attributed to the increased communication for higher
overlaps.

4.3 Convergence and Linear Solver Execution
Time

Figures 9-11 present the convergence characteristics and
the linear solver execution time for case22996. Similar re-
sults were observed for case51741 and case91984, hence we
haven’t included them. These results give an insight on the
slowdown observed with the block-Jacobi preconditioner and
SuperLU Dist. For all the different linear solution schemes,
the Newton method takes 3-4 iterations to converge. With
the block-Jacobi preconditioner, the weakest of all the pre-
conditioners tested, an exponential increase in the GMRES
iterations was observed. Although the subdomain LU solver
becomes cheaper as the number of cores increase, it is not
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Figure 3: Speedup for case22996 with different pre-
conditioning schemes
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Figure 4: Execution time in seconds for case22996
with different preconditioning schemes
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Figure 5: Speedup for case51741 with different pre-
conditioning schemes

able to compensate the total cost of the linear solver due
to increased GMRES iterations. The parallel direct solution
using SuperLU Dist has the least GMRES iterations but the
cost of each iteration is large, negating any speedup.

5. CONCLUSIONS
Scalable solution of very large power flow problems us-

ing iterative linear solver GMRES with an overlapping re-
stricted additive Schwarz preconditioner (RASM) was pre-
sented in this work. An evaluation of RASM preconditioned
GMRES, in terms of scalability and convergence, was pre-
sented with different amount of overlap between neighbor-
ing subdomains and presented the convergence behavior of
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Figure 6: Execution time in seconds for case51741
with different preconditioning schemes
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Figure 7: Speedup for case91984 with different pre-
conditioning schemes
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Figure 8: Execution time in seconds for case91984
with different preconditioning schemes

GMRES. Results obtained for three large test cases 22,996,
51574, and 91984 bus show good scalability with speedup
ranging from 6 to 9 on 16 cores.
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APPENDIX
A. PETSC: PORTABLE EXTENSIBLE

TOOLKIT FOR SCIENTIFIC COMPU-
TATION
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Figure 9: Total Newton iterations for case22996
with different preconditioning schemes
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Figure 10: Total GMRES iterations for case22996
with different preconditioning schemes
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Figure 11: Linear solve time for case22996 with dif-
ferent preconditioning schemes

The PETSc package consists of a set of libraries for creat-
ing parallel vectors, matrices, and distributed arrays, scal-
able linear, nonlinear, and time-stepping solvers. A review
of PETSc and its use for developing scalable power system
simulations can be found in [2]. In this work, we used the
linear solver GMRES and the overlapping additive Schwarz
preconditioner class (ASM) available in PETSc through the
ASM preconditioner class. The ASM preconditioner class
includes several variants with the default being the restricted
additive Schwarz preconditioner. PETSc has a plug-in archi-
tecture for third party solvers and has interfaces available for
several parallel direct solvers, one of which is the package
SuperLU Dist [14] used in this work.
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